





















| ltem                                 |        | SO DO 10 X | SO 08 08 X | SO 07 12 X |
|--------------------------------------|--------|------------|------------|------------|
| Suction plate                        | item   | PX DO 10   | PX 08 08   | PX 07 12   |
| Gripping force                       | Kg     | 4          | 3          | 4          |
| Vacuum generator                     | item   | M14P0      | M14P0      | M14P0      |
| Maximum supply pressure              | bar    | 5          | 5          | 5          |
| Maximum level of vacuum              | -KPa   | 85         | 85         | 85         |
| Air consumption at 6 bar             | NI/s   | 2.5        | 2.5        | 2.5        |
| Intake air flow rate                 | m³/h   | 12.6       | 12.6       | 12.6       |
| Temperature of use                   | °C     | -20 / +80  | -20 / +80  | -20 / +80  |
| Weight                               | Kg     | 0.5        | 0.4        | 0.7        |
| P Connection for compressed air tube | Ø ext. | 6          | 6          | 6          |

NOTE: The vacuum generator indicated in the table is included with the OCTOPUS system.

NOTE: All vacuum values indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and obtained with a constant supply pressure.

Vacuum generator supply must be carried out with non-lubricated compressed air, 5 micron filtration, in accordance with standard ISO 8573-1 class 4.

Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch =  $\frac{n}{2}$ 

inch = 
$$\frac{mm}{25.4}$$
; pounds =  $\frac{g}{453.6}$  =  $\frac{Kg}{0.4536}$